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Abstract. Recently, the Cell-Free Massive Multiple-Input Multiple-
Out-put (MIMO) architecture has emerged as a promising solution for
future wireless communication systems, where a substantial number of
distributed wireless Access Points (APs) concurrently serve a signifi-
cantly smaller count of User Equipment (UE). In this paper, we study the
AP selection problem in user-centric cell-free massive MIMO, where each
user is served by a restricted number of APs. To address this problem,
we propose a Branch-And-Bound (BAB)-based AP selection algorithm to
achieve maximum channel capacity, which is designed to efficiently obtain
the optimal subset of APs for each user. Our simulation results show that
the proposed algorithm outperforms other baseline methods in terms of
channel capacity at the expense of some complexity. Meanwhile, our
complexity is much lower than the exhaustive search, which also yields
optimal results.
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1 Introduction

Cell-Free Massive Multiple-Input Multiple-Output (MIMO) has emerged as a
promising alternative network topology, attracting considerable interest due to
its potential to mitigate inter-cell interference under the conventional cellular
structure [1]. In cell-free massive MIMO networks, a multitude of geographi-
cally dispersed wireless Access Points (APs) are linked to a Central Processing
Unit (CPU) through optical fibers, cooperatively serving all users by conjugate
beamforming [2]. However, under this architecture, every user is simultaneously
served by all available APs, leading to an elevated workload for each AP and a
substantial increase in backhaul overhead [3]. To facilitate practical implemen-
tation [4], a user-centric framework is gaining increasing momentum, wherein
each user is served exclusively by a restricted number of APs [5].
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In a User-Centric Cell-Free Massive MIMO system, every user is surrounded
by neighboring serving APs, thereby forming a virtual cell [6]. This provides the
following benefits: initially, each AP serves a subset of users, efficiently reducing
the burden and power consumption. Furthermore, the data transmission from
the AP to the CPU is minimized, resulting in a significant reduction in backhaul
overhead. A proper AP selection scheme then becomes crucial since otherwise
users can not obtain a good Quality of Service (QoS) [5] or high energy effi-
ciency [7].

Several studies have been performed to obtain user-centric virtual cells by
AP selection in cell-free massive MIMO networks [8–15]. One approach involves
the user selecting a predetermined number of APs based on the optimal channel
quality or minimal distance criteria [8–11]. Alternatively, each user can select
the APs that collectively contribute a specified percentage to the overall chan-
nel gain [12,13]. In addition, the work [14] proposed a method named Average
Channel Gain Based (ACGB) selection, i.e., each AP computes the average spec-
ification of the estimated channels of all User Equipment (UE), subsequently
serving those UE whose channel specification is greater than the average. The
work [15] investigated the problem from a game-theoretic perspective and for-
mulated the creation of user-centric AP service clusters as a localized altruistic
game. However, none of the above schemes can reach the upper limit of channel
capacity for an individual user.

In this paper, we address the problem of selecting an appropriate subset of
APs in the context of user-centric cell-free massive MIMO. Specifically, we derive
the channel capacity in this scenario as our objective, followed by constructing
a new objective function. This function applies to the Branch-And-Bound [16]
(BAB) algorithm, which is commonly used to solve integer programming prob-
lems. Finally, a BAB-based AP selection algorithm is proposed to efficiently
obtain an optimal solution to maximize the channel capacity. By comparing our
approach with other baseline approaches, we find that the proposed method
achieves better performance with an acceptable increase in computational com-
plexity. To the best of our knowledge, this is the first research on AP selection
schemes for individual users in cell-free massive MIMO systems, aiming at chan-
nel capacity optimization.

The remainder of the paper is structured as follows. In Sect. 2, we present
the channel model of cell-free massive MIMO and derives the channel capac-
ity expression. Section 3 describes the principle and detailed implementation of
the BAB-based AP selection algorithm. Numerical results and discussions are
provided in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 System Model

Consider a user-centric cell-free massive MIMO network containing one UE and
N access points. Within this cell-free network, a total of N geographically dis-
persed APs are all interconnected to a CPU through optical fibers, collectively
providing service to the UEs. As Fig. 1 illustrates, each AP equips one single
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antenna and scatters randomly around the UE, whereas the UE is equipped with
M ≥ 1 antennas. We assume a flat fading channel, and it is presumed that the
channel state information from all APs to the UE is accessible. Note that the
analysis within this work focuses on the downlink scenario, the analysis can be
extended to the uplink scenario due to the channel’s symmetry.

UE

AP

Link

Fig. 1. A graphical illustration of the user-centric cell-free massive MIMO scenario
containing one UE and N randomly-located APs, where the antennas at the UE are
omitted for simplicity.

2.1 Channel Model

In the proposed network, the received signal at the UE through the channel
fading, denoted as r, is given by

r = Hs + n, (1)

where s denotes the (N × 1) transmitted signal. Here, n represents additive
Gaussian noise with a zero mean and a variance of σ2

n. Specifically, H repre-
sents an M × N channel matrix, within which each hmk signifies the fading
coefficient between the mth antenna at the user and the kth access point, where
m ∈ {1, 2, · · · ,M} and k ∈ {1, 2, · · · , N}. These coefficients are related to the
distance vector d = [d1, d2, ..., dN ]T , where dk signifies the distance between the
user and the kth AP. Hence, the channel matrix H can be written as

H = [h1(d1),h2(d2), ...,hN (dN )], (2)

where hk(dk) = [h1k(dk), h2k(dk), ..., hMk(dk)]T .
Moreover, this study has taken into account a comprehensive compound

channel model that encompasses the cumulative impact of path loss, shadow
fading, and small-scale fading. The path loss is determined according to the fad-
ing with an exponent denoted by α, while the shadow fading is modeled using
a normal distribution. Additionally, the small-scale fading follows a Rayleigh
fading distribution. Let sk(dk) refers to the average mean power of the shadow
fading, then its logarithmic form sdB satisfies the following distribution

sdB = 10 lg(sk(dk)) ∼ N (udB , σ2
dB), (3)
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where σdB is the standard variance of 10 lg(sk(dk)), μdB represents the loga-
rithmic mean of sk(dk) measured in dB, and N (μdB , σ2

dB) denotes Gaussian
distribution with mean μdB and variance σ2

dB. Furthermore, udB is determined
by the path loss and can be obtained from

udB = 10 lg(PT /N) − α × 10 × lg(di), (4)

where PT represents the total transmitted power from all the N APs and α
represents the exponent of path loss.

Combining Eqs. (3) and (4), the fading coefficient between the mth antenna
at the user and the kth access point with a distance dk, denoted as hmk(dk), can
be obtained as

hmk(dk) = N (0,

√
sk(dk)

2
) + jN (0,

√
sk(dk)

2
). (5)

2.2 Channel Capacity

In this paper, we assume perfect Channel State Information (CSI) is available at
the transmitter, and the channel is considered to be independent and identically
distributed (i.i.d). Supposing that the total transmitted power is set at a unit
magnitude and the water-filling power allocation is applied, which is confirmed
to be optimal. The transmission power of the kth AP when applying the water-
filling method, denoted as Pk is given by

Pk = max

((
u − σ2

||hk||
)

, 0
)

, (6)

where hk is the kth column of H, k ∈ {1, 2, · · · , N}. Here u is a global constant
and should be properly chosen to guarantee

Ptotal =
N∑

k=1

Pk = 1. (7)

Referring to the channel analysis of distributed MIMO in [17] and combining
Eqs. (6) and (7), we can derive the channel capacity of the MIMO system C as
follows:

C = log2 det[IM +
1
σ2

n

HQHH ], (8)

where Q=diag(P1, P2, ..., PN ) represents the power allocation matrix at the
transmitter, subject to the constraint tr(Q) = PT , and IM is an M-dimensional
identity matrix, while σ2

n corresponds to the variance of additive Gaussian noise
and the operator (·)H denotes conjugate transpose.
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3 Bab-Based Selection Algorithm

In the previous sections, we have characterized the channel matrix H as well
as the channel capacity C in the proposed user-centric cell-free massive MIMO
scenario. Intuitively, as the number of available APs arises, better communication
service quality guarantees to the UE. To optimize energy utilization and conserve
total transmit power, a fixed number of APs are selected and connected to the
UE. Hence, in this section, we focus on the optimization of the channel capacity
C considering the constraint that the maximum amount of the optional APs,
denoted as L and 0 < L ≤ N , for the UE to access each time is restricted.

The above AP selection problem could be further formulated as a mathe-
matical matrix subset selection problem, which exhibits striking similarities to
the problems of antenna selection and beam selection and numerous algorithms
have been employed to address this type of problem. Among all the existing
algorithms, the Branch-And-Bound (BAB) algorithm exhibits significant poten-
tial in attaining the global optimal solution while reducing complexity, compared
with the exhaustive search [18]. The fundamental concept of the BAB algorithm
revolves around constructing a search tree while incorporating pruning opera-
tions.

Specifically, the objective of the AP selection problem addressed in this paper
is to derive the optimal L-amount subset out of N available APs considering
the channel condition from each AP, in order to obtain the maximum channel
capacity in the restricted situation. To tackle this problem, the BAB algorithm
will be applied as the proposed solution methodology.

Note that performing a water-filling algorithm for each potential selection
outcome can impose a significant computational burden. Hence we simplify the
problem by initially assuming an average power distribution during the AP selec-
tion process and employing the water-filling method on the selected result to
obtain the optimal power allocation scheme.

Let Hopt denotes the optimal channel matrix after selecting the optimal L-
amount AP subset in the proposed network, which could be derived as

Hopt = arg max
Hsub⊆H

[
log2 det

(
IM +

1
N × σ2

HsubHH
sub

)]
, (9)

where Hsub denotes the channel matrix from any L-amount AP subset.
Define Hτ as the matrix obtained by choosing τ columns from H after τth

selection. Additionally, Cτ denotes the corresponding channel capacity, where
Cτ = log2 det(IM + ρHτHH

τ ) and τ = 0, 1, ..., L − 1.(Note that C0 = 0)
Assuming that in the (τ + 1)th selection step, the k-th column of matrix H,

denoted as hk, will be chosen from the remaining candidate set. The resulting
(τ + 1) × M submatrix is denoted as Hτ+1 = [Hτ hk].
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Accordingly, the channel capacity after τth selection could be obtained as

Cτ+1 = log2 det(IM + ρHτ+1HH
τ+1)

= log2 det(IM + ρHτHH
τ + ρhkhH

k )

= Cτ + log2 det(IM + ρ(IM + ρHτHH
τ )−1hkhH

k )
(a)
= Cτ + log2

(
1 + ρ̄hH

k Gτhk

)
︸ ︷︷ ︸

Δk,τ

,

(10)

Algorithm 1 . The BAB-based AP Selection Algorithm with Selection Size
Constraint
1: INPUT : original channel matrix H, number of APs to be selected L, SNRρ̄
2: OUTPUT : final selected AP index vector s
3: Initialization: G = IM , B = −∞, ˜C = M , τ = 0, J = 0, s = 0L, K = {1, 2, · · · , N},

L = {0, 1, · · · , L − 1}, Δ0 = log2(1 + ρ̄HHH)
4: Iτ = {τ + 1, τ + 2, ..., (N − L + τ + 1)} ∀τ ∈ L
5: Iτ,Kτ = {Kτ + 1, Kτ + 2, ..., (N − L + τ + 1)} ∀τ ∈ L, Kτ ∈ Iτ−1

6: vk = ||hk||2 ∀k ∈ K
7: ζm = maxk∈Im vk, Zm = log2(1 + ρ̄ζm) ∀m ∈ K
8: ck = ˜C + Δk − Zτ ∀k ∈ Iτ,K

9: if τ = L − 1 then
10: if maxm∈IL−1 cm > B then
11: update: [s]L = arg maxm∈IL−1 cm, B = maxm∈IL−1 cm, s = s
12: end if
13: else
14: sort ck in descending order and obtain the ordered index vector k.
15: Gtmp = G,vtmp,j = vk

16: for i = 1 : |Iτ,K | do
17: K = [k]i
18: if cK > B then
19: K = K + 1 : N
20: update the index vector [s]τ+1 = K

21: g = 1√
ρ−1+vtmp,K

GhK , G = Gtmp − ggH , ˜C = cK

22: for ∀m ∈ K:
23: ξm = hH

mg, vm = vtmp,m − |ξm|2, Δm = log2(1 + ρvm)
24: τ = τ + 1, return to line 8
25: else
26: break this loop
27: end if
28: end for
29: end if

where ρ = 1
N×σ2 represents the Signal-to-Noise Ratio(SNR), Step (a) is estab-

lished using Sylvester’s determinant identity and Gτ = (IM + ρHτHH
τ )−1. It is
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obvious that Gτ is positive definite. As a result, the incremental value Δk,τ pre-
sented in Eq. (10) is strictly positive when hk �= 0, which implies that the channel
capacity Cτ monotonically increases as the number of iteration τ enlarges.

Nevertheless, for efficient pruning, the BAB algorithm is only suitable for
the monotonically decreasing functions with the determined maximum or the
monotonically increasing functions with the determined minimum. Hence, to
derive the maximum channel capacity, we have to reorganize a monotonically-
decreasing objective function that accommodates the BAB algorithm, since Cτ

in Eq. (10) has been proved to be monotonically increasing. Similar to [16], let

C̃τ = Cτ −
τ−1∑
m=0

Zm, (11)

where Zm = log2(1 + ρζ2m) and ζm = maxk∈Im
‖hk‖F. The index set Im com-

prises all the AP indices to be chosen in the mth selection step. The equation
in Eq. (11) has a key property presented as follows:

Fig. 2. Example of BAB algorithm: selecting 2 out of 5 APs.

Lemma 1. The object function C̃τ in Eq. (11) monotonically decreases with τ .

Proof. See Appendix A.

Based on the property mentioned in Lemma 1, since the offset
∑τ−1

m=0 Zm

is solely determined by the channel realization and independent of the selected
AP subset, the optimal solution achieved by employing the BAB algorithm for
the new objective function is equivalent to the optimal solution for the original
objective function. Therefore, we propose the algorithm to derive the maximum
channel capacity in the user-centric cell-free massive MIMO networks with the L-
amount optional APs constraint, as presented in Algorithm 1. Here we use Iτ,Kτ

to represent the set of child nodes in the (τ +1)th layer derived from the parent
node Kτ in the τth layer. The candidate set, encompassing all candidates in the
(τ + 1)th level, is denoted as Iτ =

⋃
Kτ ∈Iτ−1

Iτ,Kτ
.

Figure 2 demonstrates the fundamental searching and pruning procedure
in the BAB algorithm. By constructing a L-layer multi-branch search tree, we
enumerate all the possible L-amount APs selection schemes. During the search
operation, we maintain a global variable B (e. g., −∞) and compare it with each
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tree-node’s value, which can be calculated by Eq. (11). If any of the tree node’s
value is lower than B, according to Lemma 1, it is evident that the values of
all child nodes of that node will also be less than B and therefore subsequent
computations at that node can be skipped or “pruned”. It should be noted that
the variable B is updated only at the leaf nodes at which their values are greater
than B and have no child nodes. By iteratively performing the above steps, the
optimal solution of the objective function, denoted as s, can be obtained upon
traversing the entire tree.

Table 1. Simulation parameters

Parameters Value

UE’s antennas M 4

Total APs N 18

APs to be selected L 4

Side length R(m) 1500

Path loss α 1

Shadow fading σdB 1

Simulation times T 2000

4 Simulation Results

In this section, we present simulation results to illustrate the performance of
the BAB-based AP Selection Algorithm in user-centric cell-free massive MIMO
networks. Specifically, we consider a cell-free networking where one user with M
antennas and N single-antenna APs are randomly distributed within a square
of side length R. We perform our algorithm to select L APs out of N available
ones to serve the user. The detailed parameters of simulations are shown in
Table 1.

We compare the proposed algorithm with the optimal algorithm (i.e., exhaus-
tive search) and the other two strategies: Su’s algorithm [19] and Jung’s algo-
rithm [20]. Su’s algorithm calculates the Euclidean norms of the channel matrix
and selects the first L APs based on the magnitudes of their corresponding
norms, arranged in descending order from largest to smallest. Jung’s algorithm,
on the other hand, simplifies Eq. (8) under high SNR conditions and derives a
new selection criterion as follows: During the initial step, we choose the column
of the channel matrix with the highest power. In the nth step (n ≥ 2), the col-
umn that produces the maximum product of the channel gain and the sum of
the squared uncorrelated values with the previously selected columns is selected.

Figure 3 presents the correlation between SNR and channel capacity when the
AP locations are fixed and the user is randomly distributed. It can be founded
that at low SNR levels, the performance differences among all algorithms are
marginal. However, as the SNR increases, the distinction between the optimal
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Fig. 3. Channel capacity obtained by
different algorithms versus SNR.

Fig. 4. Nodes to be traversed by exhaus-
tive search and proposed algorithm versus
SNR.

Table 2. Complexity comparison

Algorithms Order of complexity

Optimal CL
N

Su’s O(N)

Jung’s O(M · N · L)

Proposed O(M · N · Nnode)

algorithm and another two algorithms (Su’s and Jung’s) gradually widens. Simul-
taneously, the gap between Jung’s and Su’s algorithms also increases. In con-
trast, our proposed algorithm (depicted by the blue dotted line with circles)
consistently aligns with the optimal curve, demonstrating its ability to achieve a
similar optimal performance as exhaustive search.

Table 2 shows the complexity comparison of the above four algorithms, where
Nnode denotes the number of nodes visited during the tree search, depending on
the channel realizations. Since Nnode is usually larger than L, the complexity of
our proposed algorithm is slightly higher. Thus, although our algorithm outper-
forms two baseline algorithms, it sacrifices some complexity.

Figure 4 illustrates the computational complexity of both the exhaustive
search and our proposed algorithm by comparing the number of nodes to be
traversed. It is evident from the figure that although both algorithms can find
the optimal solution, our algorithm traverses only approximately twelve percent
of the nodes compared to the exhaustive algorithm, indicating a reduction of
more than eighty percent in computational complexity.

Figure 5 demonstrates the channel capacity achieved by exhaustive search
and our proposed algorithm, and the gap between the two approaches when the
AP locations are fixed and the user is positioned at various locations within the
area. Each bulge in the surface map indicates a high likelihood of the existence of
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Fig. 5. Channel capacity achieved by (a) exhaustive search, (b) proposed algorithm,
and (c) the performance gap between the proposed algorithm and exhaustive search.
M = 4, N = 18, L = 3, R = 1500 m, α = 1, σdB = 1 and SNR= 60 dB.

an individual AP. It can be observed from Fig. 5(c) that the proposed algorithm
can effectively attain a similar optimal solution at almost every location within
the region.

5 Conclusion

This paper focuses on AP selection problems in user-centric cell-free massive
MIMO, where only a portion of the APs are dedicated to serving the user. To
optimize the channel capacity while adhering to a selection size constraint, we
formulate the AP selection problem as a mathematical matrix subset selection
problem and propose a Branch-and-Bound (BAB)-based algorithm. Through
constructing a multi-branch search tree and fast pruning, our proposed algorithm
can efficiently find the optimal AP subset quickly. Simulation results demon-
strate that the algorithm we propose is much closer to the optimal solution than
the two baselines. Additionally, our algorithm achieves a noteworthy reduction
in complexity. Looking forward, we are interested in exploring multi-user scenar-
ios that consider Interference-plus-Noise Ratio(SINR), which aligns more closely
with practical wireless communication systems.
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A Proof of Lemma 1

Based on Eqs. (10) and (11), the recursive formulation of C̃n is

C̃τ+1 = C̃τ + Δk,τ − Zτ , τ = 0, 1, ..., L − 1. (12)

It is evident that if Δk,τ ≤ Zτ holds for any τ , the function C̃τ+1 monotoni-
cally decreases. Before that, we get Gτ+1 from Eq. (10) as:

Gτ+1 =
(
IM + ρ̄HH

τ+1Hτ+1

)−1

=
(
IM + ρ̄HH

τ Hτ + ρ̄hJτ
hH

Jτ

)−1

= Gτ − gτ+1gH
τ+1, τ = 0, 1, · · · , L − 1,

(13)

where gτ+1 = GτhKτ√
ρ̄−1+hH

Kτ
GτhKτ

, Kτ is the AP index found in the τth step. Thus,

we have

Gτ =

⎧⎪⎨
⎪⎩

IM , τ = 0,

IM −
τ∑

m=1

gmgH
m, τ = 1, 2, · · · , L − 1.

(14)

Next we proceed to prove that Δk,τ ≤ Zn holds for any τ , which could be
discussed by the following parts:

1. For τ = 0, we have

Δk,0 = log2
(
1 + ρ̄hH

k hk

)
(b)

≤ log2
(
1 + ρ̄ζ20

)
= Z0,

(15)

where the inequality (b) holds in the 0th selection step for candidate AP
index k ∈ I0.

2. For τ = 1, 2, ..., L − 1. We define Ḡτ =
∑τ

m=1 gmgH
m. As the Gram matrix

gmgH
m is positive semi-definite, the summation of positive semi-definite matri-

ces, denoted as Ḡτ , also constitutes a positive semi-definite matrix. Then it
can be inferred that:

hH
k Gτhk − hH

k hk = −hH
k Ḡτhk ≤ 0. (16)
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Thus, we have
Δk,τ = log2

(
1 + ρ̄hH

k Gτhk

)
≤ log2

(
1 + ρ̄hH

k hk

)
(c)

≤ log2
(
1 + ρ̄ζ2τ

)
= Zτ ,

(17)

where the inequality (c) holds in the τth selection step for candidate AP index
k ∈ Iτ .

In conclusion, the new object function C̃τ in Eq. (11) monotonically decreases
with τ .
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